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     Hydrogen is the lightest of gases and possesses the lowest density. However at ambient 
temperature and pressure it occupies a large volume. This necessitates compressing it at 
high pressures up to 800 Bars to minimize the volume. The immense interest generated by 
hydrogen comes from the fact that it has the best energy per weight ratio of all fuels and the 
ecological nature of the combustion product. From the pedagogical point of view, it is also 
the most taught and involved in research, in particular in quantum mechanics. This aspect 
is treated in this article in order to solve the problem of storage of the hydrogen by 
minimizing losses. The solutions envisaged are, first, the improvement of the theory to 
understand the physical phenomena that occur in the physical system, especially the 
resolution of the transcendental equation, and then the means of perfecting the materials 
constituting the cavity. 
    Quantum scale investigations began with solving the Schrodinger equation at three-
dimensional spherical symmetry, taking into account the boundary conditions of Victor 
Gustave Robin on the inner walls of the envelope. The clean energies that are stored in a 
spherical-shaped cavity have been modeled theoretically by solving the transcendental 
equation. The last part of the article is devoted to the thermodynamic properties of the 
hydrogen gas, particularly the dependence of the energy with the pressure and the 
temperature. 
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1. Introduction  

At all times, energy has been indispensable for maintaining the 
life of living beings on our planet earth. It first appeared as fossil 
energy in the form of coal, which originated from the rapid burial 
of trees and plant debris within some sedimentary basins. This 
fossil energy remained for a long time in the primitive state until 
the 19th century era of running in search of black gold. Fossil fuels 
then include coal, oil and gas and are essential for transport, power 
generation, heating, plant operation and others. 

Through many scientific meetings on renewable energies, the 
discusses in current research focuses on hydrogen as an energy 
carrier. This implies that, in order to control this renewable energy, 
four levels of interventions have to be considered simultaneously, 
along a complete path leading to its proper use and management.  

-  The production or source of energy. 
-  The transportation. 
-  The storage. 
-  The distribution. 

The origin of the vector being the source of artificial production 
since hydrogen does not exist in the natural state and must be 
extracted by reforming from hydrocarbons or by hydrolysis from 
water, and the arrival tip is the distribution to the consumers. 

This article is devoted to the storage of hydrogen, with two major 
difficulties to be answered: the safety and the miniaturization of 
the storage tanks because hydrogen is an explosive product and 
little dense which implies that it occupies a large volume even in 
small quantity. The density of hydrogen at the temperature T = 273 
K and the pressure P = 1 atm is d = 0.0899 g/L equivalent to 
8.99.10-5 g/cm3 [1]. Numerous storage means have been envisaged 
for hydrogen and are currently competing: gas storage under 
pressure, cryogenic storage in liquid form, solid storage in 
hydrides and adsorbent materials [2]. 
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2. The gas storage 

 The innovative solution for pressure storage today comes from 
wound fiber and resin structures that provide much higher storage 
pressures while reducing envelope mass. At present, operating 
pressures of 350 bars are commonly proposed and the research is 
directed towards even greater pressures in the order of 700 to 800 
bars [3]. The structure of a composite fiber and resin tank is more 
complex than that of a steel tank. At least three envelopes are used 
which each fulfill a different function. 

The internal envelope, made of aluminum, does not contribute to 
the mechanical strength of the tank but must; however, withstand 
the high stresses induced by the load variations during the filling 
and use cycles. To replace aluminum, some research is directed 
towards polymeric materials such as high density polyethylene. 
These materials are even lighter than metal, stress resistant, easy 
to work with and inexpensive but they still suffer from the fact 
that they are significantly more permeable to hydrogen than 
aluminum. 

The middle envelope ensures the mechanical strength of the tank 
it is the working structure. It is obtained by winding a continuous 
network of carbon or glass fibers coated with a thermosetting or 
thermoplastic resin directly on the internal envelope. This 
winding is affected by rotating the inner envelope and by scanning 
the fibers in and out at a given angle up to the total overlap. It is 
thus possible to produce a composite structure of several covering 
layers with different angles. A firing phase then allows the 
polymerization of the resin and finishes the production phase. 

The outer casing acts as a protector against external aggressions 
such as moisture, shocks or friction, which can cause the carbon 
or glass fiber to become brittle and the tank to become brittle 
locally. This envelope is most often made of cheap fiberglass and 
can be completed with a foam thickness.  

Finally, pressure storage must be evaluated according to the risks 
of use, particularly in the case of on-board tanks. This involves a 
series of homologation tests involving the validation of the 
storage system for various accidental scenarios such as gas 
leakage, crash, fire, impact, as well as corrosion resistance and 
behavior in cycling and fatigue. 

3. Mathematical theory 

To solve theoretically, hydrogen gas transmission 
phenomenon that is enclosed in a spherical cavity under high 
pressure, two equations are necessary: the Schrödinger equation 
(1), which is well known with the Hamiltonian 𝐻𝐻  and the energy 
E, and the Victor Gustave Robin boundary condition (2), 

𝐻𝐻.𝜓𝜓(�⃗�𝑥) = E�k�⃗ �.𝜓𝜓(�⃗�𝑥)                            (1) 
𝛾𝛾(�⃗�𝑥)𝜓𝜓(�⃗�𝑥) + 𝑛𝑛�⃗ (�⃗�𝑥).∇��⃗ 𝜓𝜓(�⃗�𝑥) = 0,     �⃗�𝑥 ∈ 𝜕𝜕Ω              (2) 

The self-adjoint extension parameter   𝛾𝛾(�⃗�𝑥)   takes   into account   
the constituent material of the cavity, 𝜓𝜓(�⃗�𝑥) is the wave function, 
∂Ω is the limit of a spatial region Ω and 𝑛𝑛�⃗ (�⃗�𝑥) is the unit vector 
perpendicular to the surface. As usual, the wave function can be 
factored as the product of a radial function 𝜓𝜓𝜈𝜈ℓ(𝑟𝑟)  with a 

spherical harmonic function 𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑) according to the following 
expression 

𝜓𝜓(�⃗�𝑥) = 𝜓𝜓𝜈𝜈ℓ(𝑟𝑟).𝑌𝑌ℓ𝑙𝑙(𝜃𝜃,𝜑𝜑)                           (3) 
3.1. The transcendental equation of the energy spectrum 

When replacing (3) in (2) and for a spherical cavity, the most 
general perfectly reflecting boundary condition of (2) takes the 
form 

𝛾𝛾𝜓𝜓𝑘𝑘ℓ(𝑅𝑅) + ∂r𝜓𝜓𝑘𝑘ℓ(𝑅𝑅) = 0                           (4) 
The Hamiltonian radial equation of the hydrogen atom, in 
spherical coordinates, takes the expression: 

− 1
2M
�∂r2 + 2

r
∂r −

ℓ(ℓ+1)
r2

− e2

r
� 𝜓𝜓𝜈𝜈ℓ(𝑟𝑟) = 𝐸𝐸𝜓𝜓𝜈𝜈ℓ(𝑟𝑟)          (5) 

In this case, the parameterized energy is as [4] 

𝐸𝐸 = −𝑀𝑀𝑒𝑒4

2𝜈𝜈2
                                       (6) 

While in the infinite volume the quantum number ν takes integer 
values for the bound state spectrum, in the cavity ν is in general 
real-valued. Introducing the Bohr radius 

𝑎𝑎 = 1
𝑀𝑀𝑒𝑒2

                                         (7) 
The energy with function of the Bohr radius is 

𝐸𝐸 = 𝑒𝑒2

32 𝑎𝑎
                                      (8) 

and the normalizable wave function is given by 

𝜓𝜓𝜈𝜈ℓ(𝑟𝑟) = 𝐴𝐴 �2𝑟𝑟
𝜈𝜈𝑎𝑎
�
ℓ
𝐿𝐿𝜈𝜈−ℓ−12ℓ+1 �2𝑟𝑟

𝜈𝜈𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

𝜈𝜈𝑎𝑎
�              (9) 

where 𝐿𝐿𝜈𝜈−ℓ−12ℓ+1 �2𝑟𝑟
𝜈𝜈𝑎𝑎
�  is an associated Laguerre function, a is the 

Bohr radius and A is a constant.  
When resolving (4), the energy spectrum is then determined by 
the transcendental equation [4] 

�𝛾𝛾𝜈𝜈𝑎𝑎
2
− 1

2
+ ℓ𝜈𝜈𝑎𝑎

2𝑅𝑅
� 𝐿𝐿𝜈𝜈−ℓ−12ℓ+1 �2𝑅𝑅

𝜈𝜈𝑎𝑎
� − 𝐿𝐿𝜈𝜈−ℓ−22ℓ+2 �2𝑅𝑅

𝜈𝜈𝑎𝑎
� = 0           (10) 

3.2. Resolution of the transcendental equation 

 
Hydrogen energies are quantified by the two parameters ν and  ℓ, 
these energies depends on the self-adjoint extension parameter (as 
possible) which identify the materiel properties of the inner cavity 
wall, many scientists consider the cavity envelopes made with 
nanotechnology, fibers and polymers, [5-13]. The energies of the 
hydrogen are also a function of the radius 𝑅𝑅 of the spherical cavity.  
Consider the case 𝜈𝜈 = 4, (10) takes the form  
 

�2𝛾𝛾𝑎𝑎 − 1
2

+ 2ℓ𝑎𝑎
𝑅𝑅
� 𝐿𝐿3−ℓ2ℓ+1 � 𝑅𝑅

2𝑎𝑎
� − 𝐿𝐿2−ℓ2ℓ+2 � 𝑅𝑅

2𝑎𝑎
� = 0           (11) 

For 𝓵𝓵 = 𝟎𝟎, (11) becomes 

�2𝛾𝛾𝑎𝑎 − 1
2
� 𝐿𝐿31 �

𝑅𝑅
2𝑎𝑎
� − 𝐿𝐿22 �

𝑅𝑅
2𝑎𝑎
� = 0                 (12) 

replacing the expressions of the generalized Laguerre 
polynomials 𝐿𝐿31 �

𝑅𝑅
2𝑎𝑎
� and 𝐿𝐿22 �

𝑅𝑅
2𝑎𝑎
� 

    𝐿𝐿31 �
𝑅𝑅
2𝑎𝑎
� = −1

6
� 𝑅𝑅
2𝑎𝑎
�
3

+ 2 � 𝑅𝑅
2𝑎𝑎
�
2
− 6 � 𝑅𝑅

2𝑎𝑎
� + 4           (13) 

𝐿𝐿22 �
𝑅𝑅
2𝑎𝑎
� = 2                                 (14) 
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Doing calculations, one can arrive to (15) 

 𝑋𝑋3 − 12 𝑋𝑋2 + 36 𝑋𝑋 − 24 = 0                       (15) 

where                                     𝑋𝑋 = � 𝑅𝑅
2𝑎𝑎
�                                  (16) 

Equation (15) is a polynomial equation of degree three, with using 
the informatics processing, the solutions are found using the roots 
Matlab procedure, there is three distinct values for  𝑋𝑋, then from 
(16), three values for the cavity radius are deduced. The solutions 
are reported in the Table 1 

Table 1: values of  𝑋𝑋, and corresponding values for the radius 𝑅𝑅 calculated. 

X=R/2a R(x10-10 meter) 
7.7588 8.2116 
3.3054 3.4983 
0.9358 9.9041 

For 𝓵𝓵 = 𝟏𝟏:  
In this case, the quantify parameter of the energies is always equal 
to four (𝜈𝜈 = 4), and the azimuthally parameter is changed equal 
to one (ℓ = 1), (11) becomes  

�2𝛾𝛾𝑎𝑎 − 1
2

+ 2𝑎𝑎
𝑅𝑅
� 𝐿𝐿23 �

𝑅𝑅
2𝑎𝑎
� − 𝐿𝐿14 �

𝑅𝑅
2𝑎𝑎
� = 0               (17) 

replacing the expressions of the generalized Laguerre 
polynomials 𝐿𝐿23 �

𝑅𝑅
2𝑎𝑎
� and  𝐿𝐿14 �

𝑅𝑅
2𝑎𝑎
� 

                       𝐿𝐿23 �
𝑅𝑅
2𝑎𝑎
� = 1

2
� 𝑅𝑅
2𝑎𝑎
�
2
− 5 � 𝑅𝑅

2𝑎𝑎
� + 10                   (18) 

𝐿𝐿14 �
𝑅𝑅
2𝑎𝑎
� = −� 𝑅𝑅

2𝑎𝑎
�+ 5                                (19) 

Then, taking into account (18) and (19), (17) becomes 
�2𝛾𝛾𝑎𝑎 − 1

2
+ 2𝑎𝑎

𝑅𝑅
� �1

2
� 𝑅𝑅
2𝑎𝑎
�
2
− 5 � 𝑅𝑅

2𝑎𝑎
� + 10� − �−� 𝑅𝑅

2𝑎𝑎
� + 5� = 0     (20) 

After calculations (20) takes the form 
𝑚𝑚 𝑋𝑋3 − 2(5𝑚𝑚 − 3)𝑋𝑋2 + 20(𝑚𝑚 − 2)𝑋𝑋 + 40 = 0         (21) 

Where  𝑋𝑋  is the new variable, which is defined by the (16), and 
𝑚𝑚 is real number parameter defined as  

𝑚𝑚 = 4𝛾𝛾𝑎𝑎 − 1   ⟹    𝛾𝛾𝑎𝑎 = 𝑙𝑙+1
4

                 (22) 
This is a third order equation. To find the solutions use the graphic 
informatics processing, with resolving the system  

�
𝐺𝐺(𝑋𝑋) = 0
𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒

𝐺𝐺(𝑋𝑋) = 𝑚𝑚 𝑋𝑋3 − 2(5𝑚𝑚 − 3)𝑋𝑋2 + 20(𝑚𝑚 − 2)𝑋𝑋 + 40
      (23) 

The calculations were done with five different values of the 
parameter 𝑚𝑚. For each curve it exist two positive solutions, the 
results are written in the Table 2 
In this case, the energy 𝐸𝐸41 corresponding to 𝐸𝐸𝜈𝜈ℓ when 𝜈𝜈 = 4 and 
ℓ = 1,  is stationary and stay constant along all the abscises axes.  

For 𝓵𝓵 = 𝟐𝟐:  
As well as the section before, the quantify parameter of the 
energies is always equal to four (𝜈𝜈 = 4), and the azimuthally 
parameter is change equal to two (ℓ = 2), (11) becomes 

�2𝛾𝛾𝑎𝑎 − 1
2

+ 4𝑎𝑎
𝑅𝑅
� 𝐿𝐿15 �

𝑅𝑅
2𝑎𝑎
� − 𝐿𝐿04 �

𝑅𝑅
2𝑎𝑎
� = 0           (24) 

 

Table 2: The solution points of (21) 

 
m 

 
X= R/2a 

R=2aX 
(x10-10 
meter) 

 
E=e2X/(16R)   
(x10-30Joule) 

First points 
11 2.5876 2.7386 15.118 
19 2.6604 2.8157 15.118 
27 2.6907 2.8477 15.118 
35 2.7073 2.8653 15.118 
43 2.7177 2.8763 15.118 

Second points 
11 7.0658 7.4782 15.118 
19 7.1347 7.5511 15.118 
27 7.1639 7.5820 15.118 
35 7.1801 7.5991 15.118 
43 7.1903 7.6099 15.118 

 
The graphic resolution is reported in the Figure 1  

 
Figure 1: Graphic resolution of (23), showing the curves G(X) and the two 

solution points. 
 
replacing the expressions of the generalized Laguerre 
polynomials 𝐿𝐿15 �

𝑅𝑅
2𝑎𝑎
� and  𝐿𝐿04 �

𝑅𝑅
2𝑎𝑎
� 

 
𝐿𝐿15 �

𝑅𝑅
2𝑎𝑎
� = −� 𝑅𝑅

2𝑎𝑎
�+ 6                          (25) 

𝐿𝐿04 �
𝑅𝑅
2𝑎𝑎
� = 1                                         (26) 

 
Doing calculations, one can arrive to the equation below 
 

𝑋𝑋2 − 6(𝑚𝑚 − 1)𝑋𝑋 − 24 = 0                      (27) 
 
the variable X and the parameter m are defined by respectively 
(16) and (22). Solutions can be found graphically from the curve 
with resolving the equality 

 

�
𝑚𝑚𝐻𝐻(𝑋𝑋) = 0
𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒

𝐻𝐻(𝑋𝑋) = 𝑚𝑚𝑋𝑋2 − 6(𝑚𝑚 − 1)𝑋𝑋 − 24
              (28) 
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It exists only one positive solution, the unique value for  𝑋𝑋 and the 
radius 𝑅𝑅  are obtained when the parameter  𝑚𝑚 is fixed equal to 
2,1167. 1030, with one great value of the self-adjoint extension 
parameter 𝛾𝛾 (𝛾𝛾 = 1. 1040), this maximizes the hydrogen energy 
storage. The result is reported in Table 3  

Table 3: value of the radius R. 

m (x1030) X= R/2a R(x10-10 meter) 
2.1167 6.0000 6.3502 

 
The graphic resolution is reported in the Figure 2 

 
Figure 2: Graphic resolution of (28), showing the red curve H(X) for 𝑚𝑚 =

2,1167. 1030 and the unique solution (blue point). 
For 𝓵𝓵 = 𝟑𝟑:  

Consider here the quantify parameter of the energies equal to 
four (𝜈𝜈 = 4), and the azimuthally parameter is change equal to 
three (ℓ = 3), (11) becomes  

�2𝛾𝛾𝑎𝑎 − 1
2

+ 6𝑎𝑎
𝑅𝑅
� 𝐿𝐿07 �

𝑅𝑅
2𝑎𝑎
� − 𝐿𝐿−18 � 𝑅𝑅

2𝑎𝑎
� = 0              (29) 

With:                𝐿𝐿07 �
𝑅𝑅
2𝑎𝑎
� = 1    𝑎𝑎𝑛𝑛𝑎𝑎     𝐿𝐿−18 � 𝑅𝑅

2𝑎𝑎
� = 0                (30) 

Then:                              2𝛾𝛾𝑎𝑎 − 1
2

+ 6𝑎𝑎
𝑅𝑅

= 0                             (31) 
Resolving (31), the Bohr radius, a, depend on the cavity radius 𝑅𝑅 
according to the form 

𝑎𝑎 = 𝑅𝑅
4(𝛾𝛾𝑅𝑅+3)

                                  (32) 
And, by (8) and (32), the energy is 

𝐸𝐸43 = 𝑒𝑒2

32 𝑎𝑎
=  (𝛾𝛾𝑅𝑅+3)𝑒𝑒2

8𝑅𝑅
                        (33) 

 
4. Graphics processing of the energies 
 

The informatics processing of the hydrogen energies is made 
in the Matlab R2009a environment. All the expressions of the 
energies decrease with the cavity radius R in the function form 

𝐸𝐸 = 𝐶𝐶  
𝑅𝑅

, 𝐶𝐶  𝑖𝑖𝑖𝑖 𝑎𝑎 𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖𝑐𝑐𝑎𝑎𝑛𝑛𝑐𝑐                 (34) 
except the last energy 𝐸𝐸43. 
 
4.1. Hydrogen energies 𝐸𝐸40 graphics 

It exists three possible energies corresponding, respectively to 
three different radius of the spherical tank storing the hydrogen. 
These values are reported in the Table 4. 
 

Table 4: values of the cavity radius and their corresponding energies 𝐸𝐸40 

R (x10-10 meter) E40=e2X/(16R)   (x10-30 Joule) 
0.9904 125.30 
3.4982 035.50 
8.2114 015.10 

The Figure 3 shows the behavior of the energy 𝐸𝐸40 with function 
of the radius 𝑅𝑅, it decreases like the function  1

𝑅𝑅
. The three solution 

points of the radius are fixed in the curve. One can remark that the 
radius axes coordinates are very small, atomic scale, because there 
is no correlation between the energy 𝐸𝐸40  and the self-adjoint 
extension parameter.  

 
Figure 3: Curve of the energy 𝐸𝐸40(𝑅𝑅) with the three solutions (blue points).  

4.2. Hydrogen energy 𝐸𝐸41 graphics 

From the Table 2, there are two different points which are the 
solution of (21). Because the values are nearer in each point, it is 
necessary to make the average of the values. The two points radius 
average, with different positions, have the same energy, they are 
reported in the Table 5 

Table 5: energy𝐸𝐸41 corresponding to the two radius position average 

R (x10-10meter) E41=e2X/(16R)   (x10-30 Joule) 
2.8287 15.118 

7.5639 15.118 

In the Figure 4, the two average points occupy two different 
positions, supported by two different energy curves in 1/R, but 
possess the same energy 𝐸𝐸41 =  15,118. 10−30 Joule . Also the 
radius axes coordinates are very small, atomic scale, because there 
is no correlation between the energy 𝐸𝐸41  and the self-adjoint 
extension parameter. 

4.3. Hydrogen energy 𝐸𝐸42 graphics 

The energy 𝐸𝐸42 possess one solution value, because (27) has only 
one approximate best solution which is 𝑋𝑋 = 6. The corresponding 
values of the cavity radius 𝑅𝑅 and the energy  𝐸𝐸42 are reported on 
the Table 6 
 

Table 6: values of the cavity radius 𝑅𝑅 and the energy 𝐸𝐸42 

R (x10-10meter) E42=e2X/(16R)    (x10-30 Joule) 
6.3500 15.118 
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Figure 4: Curve of the energy E41(R) with the two solutions points, different 

positions and same energy.  
 

The Figure 5 shows the behavior of the energy with function of 
the cavity radius, but the energy 𝐸𝐸42possesses only one value, 
equal to 15.118x10-30 Joule, which is very small. 

 
Figure 5: Energy E42 (R) behavior with function on the cavity radius R, and the 

point solution is fixed on the curve. 
 

4.4. Hydrogen energies 𝐸𝐸43 graphics 

Expression (33) gives the relation between the energy E43 with 
the self-adjoint extension parameter 𝛾𝛾, and as well as it is known, 
𝛾𝛾 greater make favorable the hydrogen storage. The calculations 
were made with three different values of this extension parameter. 
To be realist, the cavity radius dimension is set to be between 0 to 
0.4 meter and the best dimension of one hydrogen tank is when 
its radius is equal to 0.2 meter. Also to have a great energy, 
extension parameter 𝛾𝛾 is take with great values about 1. 1040. The 
results values are report in the Table 7 
 
Table 7: three values of the extension parameter generate three different values 

of the energy 𝐸𝐸43, when the cavity radius is equal  to 0.2 meter 

R  (meter) E43= (γR+3)e2/(8R)    
(Joule) 

γ  (x1040) 

0.2   160   5 
0.2   800 25 

0.2 1600 50 

Informatics processing of (33) and the graphic study of the 
function 𝐸𝐸43 = 𝑓𝑓(𝑅𝑅, 𝛾𝛾) gives the Figure 6 

 
Figure 6: Three point values of the energy E43 (R) are marked 

on three different curves of energy (in 1/R) with three different 
values of the extension parameter 𝛾𝛾. 

 
5. Thermodynamic model 

Thermodynamic properties of hydrogen storage systems, such as 
temperature and pressure, are required in order to evaluate and 
optimize their performance. The thermodynamic models of 
hydrogen storage systems are based on the mass and energy 
balance equations [14].  

To simply model the hydrogen stored in a spherical cavity of 
radius 𝑟𝑟, with taking into account the thermodynamic phenomena, 
the knowledge of the thermodynamic state functions and there 
states variables becomes necessary. It exists the intensive state 
variables as the temperature 𝑇𝑇, the pressure 𝑃𝑃, the density 𝑎𝑎 and 
the extensive state variables as the volume 𝑉𝑉, the masse 𝑚𝑚, the 
mole number 𝑁𝑁or the mole number per unit volume 

 𝑛𝑛 = 𝑁𝑁
𝑉𝑉0

                                        (35) 

where 𝑉𝑉0 is the final volume of the tank (𝑉𝑉0 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖𝑐𝑐𝑎𝑎𝑛𝑛𝑐𝑐). 
 
5.1. Hypothesis 

The volume 𝑉𝑉 of the spherical cavity of radius 𝑟𝑟 is define by the 
geometrical relation 

𝑉𝑉 = 4
3
𝜋𝜋 𝑟𝑟3                                  (36) 

The clean or internal energy 𝐸𝐸  decrease with the radius 𝑟𝑟 
according to the relation 

𝐸𝐸 = 𝐴𝐴
𝑟𝑟

    𝑤𝑤𝑖𝑖𝑐𝑐ℎ  𝐴𝐴 = 𝑒𝑒2𝑋𝑋
16

= 𝑒𝑒2𝑅𝑅
32 𝑎𝑎

= 𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖𝑐𝑐𝑎𝑎𝑛𝑛𝑐𝑐           (37) 

Where 𝑋𝑋 is the solution of the polynomial equation obtained from 
the transcendental equation, it is define by (16). 
Hydrogen in state gas can appear as perfect gas or real gas, in 
practice the real gas is always used. The density of hydrogen at 
elevated pressure can be estimated using the principles of 
thermodynamics. While the behavior of most gases can be 
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approximated with a high accuracy by the simple equation of state 
of an ideal gas with the constant 𝑅𝑅𝐼𝐼𝐼𝐼 
 

𝑃𝑃 𝑉𝑉 = 𝑛𝑛 𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇                             (38) 
 
that relates the pressure, the volume and the temperature of a 
given substance, the behavior of hydrogen deviates significantly 
from the predictions of the ideal gas model. The resulting 
deviation from the ideal gas law is always in the form of 
expansion – the gas occupies more space than the ideal gas law 
predicts. One of the simplest ways of correcting for this additional 
compression is through the addition of a compressibility factor, 
designated by the symbol𝑍𝑍. Compressibility factors are derived 
from data obtained through experimentation and depend on 
temperature, pressure and the nature of the gas. The 𝑍𝑍 factor is 
then used as a multiplier to adjust the ideal gas law to fit actual 
gas behavior as follows [15] 
 

𝑃𝑃 𝑉𝑉 = 𝑛𝑛 𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇                             (39) 
 

5.2. Thermodynamic functions 

Replacing the volume expression, (36), in (39), the cavity radius 
is expressed with function on the pressure and the temperature 

𝑟𝑟(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛) = �3𝑛𝑛 𝑍𝑍 𝑅𝑅𝐼𝐼𝐼𝐼
4𝜋𝜋

 �
1
3  �𝑇𝑇

𝑃𝑃
�
1
3                     (40)  

The internal energy form is obtained by replacing the cavity radius 
(40) in (37). 

𝐸𝐸(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛) = 𝐴𝐴 � 4𝜋𝜋
3𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼

�
1
3 �𝑃𝑃

𝑇𝑇
�
1
3 = 𝐴𝐴 �4𝜋𝜋

3
�
1
3 � 𝑃𝑃

𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇
�
1
3    (41) 

The internal energy is function of the pressure, the temperature, 
the compressibility factor and the mole number per unit volume. 
It increase with the pressure rising and it decrease when the 
temperature raise. Also, the inner energy is quantified by two 
parameters 𝜈𝜈 𝑎𝑎𝑛𝑛𝑎𝑎 ℓ, the total energy in the tank storing hydrogen 
is the addition of all the individual energies corresponding to 
different states of the energy parameterized by the constant 𝐴𝐴𝑖𝑖 

𝐴𝐴𝑖𝑖 = 𝑒𝑒2𝑋𝑋𝑖𝑖
16

= 𝑒𝑒2

32 𝑎𝑎
𝑅𝑅𝑖𝑖                           (42) 

The final cavity radius takes one realistic value manufacturing the 
tank 

    𝑅𝑅𝑖𝑖 = 𝑅𝑅1,𝑅𝑅2,𝑅𝑅3, … … … …𝑅𝑅𝑐𝑐       𝑐𝑐  𝑖𝑖𝑛𝑛𝑐𝑐𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟 > 0        (43) 
Then 

𝐸𝐸𝑖𝑖(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛) = 𝐴𝐴𝑖𝑖 �
4𝜋𝜋

3𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼
�
1
3 �𝑃𝑃

𝑇𝑇
�
1
3                  (44) 

 
The partition function 𝑧𝑧 is then defined by the relation  
 

z(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛)  = �𝑒𝑒𝑥𝑥𝑒𝑒
𝑖𝑖

�−𝛽𝛽𝐸𝐸𝑖𝑖(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛)� 

          = ∑ 𝑒𝑒𝑥𝑥𝑒𝑒𝑖𝑖 �−𝛽𝛽𝐴𝐴𝑖𝑖 �
4𝜋𝜋

3𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼
�
1
3 �𝑃𝑃

𝑇𝑇
�
1
3�             (45) 

with         𝛽𝛽 = 1
𝐾𝐾𝐵𝐵𝑇𝑇

    𝐾𝐾𝐵𝐵  𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑒𝑒 𝐵𝐵𝑐𝑐𝐵𝐵𝑐𝑐𝑧𝑧𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖𝑐𝑐𝑎𝑎𝑛𝑛𝑐𝑐           (46) 

For the construct tank of hydrogen the radius is equal to 𝑅𝑅𝑐𝑐 then 
the true partition function 𝑧𝑧 take the form 

𝑧𝑧(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛) = 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝛽𝛽𝑒𝑒2𝑅𝑅𝐶𝐶
32 𝑎𝑎

� 4𝜋𝜋
3𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼

�
1
3 �𝑃𝑃

𝑇𝑇
�
1
3�            (47) 

The free energy 𝐹𝐹 is then deduce from (46) by the relation 
 

𝐹𝐹(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛) = −𝐾𝐾𝐵𝐵𝑇𝑇𝐿𝐿𝑛𝑛𝑧𝑧 =
𝑒𝑒2𝑅𝑅𝐶𝐶
32 𝑎𝑎

�
4𝜋𝜋

3𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼
�
1
3
�
𝑃𝑃
𝑇𝑇
�
1
3
 

                      = 𝑒𝑒2

32 𝑎𝑎
�4𝜋𝜋
3
�
1
3 𝑅𝑅𝐶𝐶 �

𝑃𝑃
𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇

�
1
3                         (48) 

The free energy is also function of the internal energy 𝐸𝐸 , the 
entropy 𝑆𝑆 and the temperature 𝑇𝑇, with the following relation 

𝐹𝐹(𝐸𝐸, 𝑆𝑆,𝑇𝑇) = 𝐸𝐸 − 𝑇𝑇𝑆𝑆                            (49) 
Then 

𝑆𝑆 = 𝐸𝐸−𝐹𝐹
𝑇𝑇

                                     (50) 
By substituting the  𝐸𝐸 and  𝐹𝐹 expression, respectively (41) and 
(48), in (50), the entropy 𝑆𝑆 takes the form 

𝑆𝑆(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛) = (𝑅𝑅 − 𝑅𝑅𝐶𝐶) � 𝑒𝑒2

32 𝑎𝑎
� �4𝜋𝜋

3
�
1
3 � 𝑃𝑃

𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇4
�
1
3 , 𝑅𝑅 > 𝑅𝑅𝐶𝐶   (51) 

The Gibbs 𝐺𝐺 energy is function of the free energy 𝐹𝐹 the pressure 
P and the volume 𝑉𝑉, like  

𝐺𝐺 = 𝐹𝐹 + 𝑃𝑃𝑉𝑉                                  (52)   
By replacing V and F with their expressions, (36) and (48), in (51) 

𝐺𝐺(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛) = 𝑒𝑒2

32 𝑎𝑎
�4𝜋𝜋
3
�
1
3 𝑅𝑅𝐶𝐶 �

𝑃𝑃
𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇

�
1
3 + 4

3
𝜋𝜋 𝑟𝑟3𝑃𝑃       (53) 

Then taking into account of the radius r (40), 

𝐺𝐺(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛) = 𝑒𝑒2

32 𝑎𝑎
�4𝜋𝜋
3
�
1
3 𝑅𝑅𝐶𝐶 �

𝑃𝑃
𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇

�
1
3 +  (𝑛𝑛 𝑍𝑍 𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇 )    (54) 

The chemical potential 𝜇𝜇 is define like 
 

𝜇𝜇 = �𝜕𝜕𝐼𝐼
𝜕𝜕𝑁𝑁
�
𝑃𝑃,𝑇𝑇

= �𝜕𝜕𝐼𝐼
𝜕𝜕𝑛𝑛
�
𝑃𝑃,𝑇𝑇

�𝜕𝜕𝑛𝑛
𝜕𝜕𝑁𝑁
�                      (55) 

Knowing (35) 
𝜇𝜇 = �𝜕𝜕𝐼𝐼

𝜕𝜕𝑁𝑁
�
𝑃𝑃,𝑇𝑇

= 1
𝑉𝑉0
�𝜕𝜕𝐼𝐼
𝜕𝜕𝑛𝑛
�
𝑃𝑃,𝑇𝑇

                    (56) 

 
The calculation arrive to the final expression 
 

𝜇𝜇 = − 𝑒𝑒2𝑅𝑅𝐶𝐶
96 𝑎𝑎 𝑉𝑉0

�4𝜋𝜋
3
�
1
3 � 𝑃𝑃

𝑛𝑛4𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇
�
1
3 + 𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇

𝑉𝑉0
            (57) 

With  
𝑉𝑉0 = 4𝜋𝜋

3
𝑅𝑅𝐶𝐶3                                  (58) 

6. Graphic processing 

The data are set with the following values in the international 
unit system (IS):  
the Bohr radius is 𝑎𝑎 = 0,52918𝑥𝑥10−10 𝑚𝑚𝑒𝑒𝑐𝑐𝑒𝑒𝑟𝑟, the constant of 
real gas is 𝑅𝑅𝐼𝐼𝐼𝐼  =  8,3143 𝐽𝐽.𝐾𝐾−1.𝑚𝑚𝑐𝑐𝐵𝐵−1, the  mole number per 
unit volume is equal to the Avogadro number 𝑛𝑛 =
 6,0225. 1023 𝑒𝑒𝑎𝑎𝑟𝑟𝑐𝑐𝑖𝑖𝑐𝑐𝐵𝐵𝑒𝑒𝑖𝑖 𝑒𝑒𝑒𝑒𝑟𝑟 𝑚𝑚𝑐𝑐𝐵𝐵𝑒𝑒, the cavity radius   𝑅𝑅 = 0.2 𝑚𝑚  
and from (37) the constant 𝐴𝐴 =  3,0312. 10−30 𝐽𝐽.𝑚𝑚.  
The values of the compressibility factor were taken from the 
experimental curve of the compressibility factor as a function of 
the pressure at different temperatures [15]. The experimental data 
are shown in Table 8 
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Table 8: dataset for calculations 

 
P (Bar) 

 
0 

 
50 

 
100 

 
200 

 
300 

 
400 

 
500 

 
600 

T1=100 
(K) 

        

Z1 1 0.98 1.06 1.22 1.44 1.66 1.88 2.05 
T2=150 

(K) 
Z2 1 0.98 1.08 1.18 1.32 1.46 1.59 1.72 

T3=200 
(K) 
Z3 1 0.98 1.08 1.16 1.26 1.36 1.46 1.56 

T4=300 
(K) 
Z4 1 0.99 0.98 1.07 1.12 1.18 1.25 1.39 

 
6.1. Energy with function on the pressure and the temperature 

Knowing the energy relation as function of the pressure and the 
temperature (59) 

𝐸𝐸(𝑃𝑃,𝑇𝑇,𝑍𝑍,𝑛𝑛) = 𝐴𝐴 � 4𝜋𝜋
3𝑛𝑛𝑍𝑍𝑅𝑅𝐼𝐼𝐼𝐼

�
1
3 �𝑃𝑃

𝑇𝑇
�
1
3                     (59) 

The curves of the energies are shown in the Figure 7  

 
Figure 7: Energy, (59), as function of the pressure and the temperature. 

 
Figure 8: Energy with function of the pressure and the temperature including the 

experimental points. 

Considering the experimental values of the compressibility 
factors, and with one scale factor equal to         𝑖𝑖𝑓𝑓 = 1,511. 10−22, 

the curves were adjusted using the function of the energy (59). 
The Figure 8 shows the behavior of the energies with the 
experimental values of the compressibility factor. 

7. Conclusion 

This article has examined the hydrogen storage phenomenon 
in a spherical cavity. Especially the hydrogen gas subjected to 
high pressures, leading to significant loss of mass of hydrogen, 
and requiring materials that can withstand these high pressures 
and minimize losses. For all these reasons, the problem is 
considered at the quantum scale. So the first part of the article is 
dedicated to the quantum mechanics, it studies the theory of the 
radial functions corresponding to the hydrogen by resolving the 
Schrödinger equation with adding the boundary condition of 
Robin. The second part was devoted to solving the transcendental 
equation that is the result of the first part and has resulted in the 
relations of the energies. The mathematical studying of the 
transcendental equation has given three polynomial equations 
which are independent on the self-adjoint extension parameter. 
The energies in this case are very small, E40 # E41 # E42 # 1.10-28 
Joule. Only the case where the energy E43 is function of the self-
adjoint extension parameter is acceptable and important. This 
energy is estimated between 160 J and 1600 J, because of the high 
value of the self-adjoint extension parameter about 1.1040. The 
conclusion from this part is that all the energies depend on the 
radius R of the cavity according to the form (Constant/R). The 
third part studies the thermodynamic modeling, which made it 
possible to express all the thermodynamic functions with function 
of the pressure and the temperature. With considering the 
experimental curve of the compressibility factor as a function of 
the pressure at different temperatures, the expression of the energy 
was adjusted very well with the model of the theoretical energy. 
The energy increase with the pressure P rising and decrease with 
the increasing of the temperature T. This made it possible to 
validate the model, since there is a perfect agreement between the 
experimental values of energy and the theoretical model. 
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